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Abstract 
This report presents numerical procedures for solving the equations of Magneto-Fluid-Dynamics 

(MFD). These equations consist of the Navier-Stokes equations coupled to the full set of 

Maxwell‟s equations. They govern flow within electromagnetic fields. The primary interest to 

the Air Force of this work is flow control about aerodynamic vehicles and thrust enhancement 

within scramjet engines via the interaction of external electromagnetic fields, produced on board, 

with the high speed flow about or through the vehicle. They have been solved for both external 

flow and internal flow. Test cases include the Hartmann flow problem
1
, weakly ionized flow 

simulating the RAM-C flight experiment
2
, highly ionized flow past a hemi-sphere-cylindrical 

body simulating the Zieman experiment
3
 and flow through the accelerator section of and “energy 

by-pass” scramjet engine
4,5

.  

I. Background 

The interaction of an ionized flow, which caused by the flow crossing the bow shock of a high 

speed aerodynamic vehicle, with electromagnetic fields produced on board offers a potential 

breakthrough in both hypersonic vehicle design and propulsion. Reductions in heat transfer and 

flow control using magnetic fields can be important for enabling a hypersonic vehicle to pass 

more efficiently and safely through the atmosphere. Magnetic and electric fields placed within 

the propulsion system may enable the extraction of electrical energy from the ionized flow 

entering the engine, while simultaneously slowing the fluid, without losses in total pressure 

caused by shockwaves, and enhancing complete fuel combustion. The extracted energy can be 

returned back into the flow after combustion for further flow acceleration and engine thrust. 

Realistic aerodynamic simulations, under the conditions of expected low electrical conductivities 

and reasonably strong magnetic fields, will be required to determine if these potential benefits 

may or may not be realizable. Solutions of the complete equations governing magneto-fluid 

dynamics, including magnetic induction and diffusion within strong magnetic fields, are needed 

to perform the required flow simulations. The goal of this research has been to develop 

algorithms for the simulation of weakly ionized aerodynamic flows,  both internal and external, 

within strong externally applied electromagnetic fields 

 

The algorithms developed within this research contain numerical procedures for solving the 

governing MFD equations, applying boundary conditions, evaluating temperature and pressures 

for an open ended set of chemical species composing the flow, and determining the electrical 

conductivity of the ionized gas. The governing equations of MFD consist of the Navier-Stokes 

equations, Maxwell‟s equations and the equations describing chemical and thermal equilibrium 
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and non-equilibrium high temperature air. Maxwell‟s equations appear in two forms – 1) the 

usual form found in the literature and 2) the scalar and vector potential form found in text books, 

but not attempted for solution. The present effort developed solution and boundary condition 

procedures for both forms and have been presented at seven AIAA (American Institute of 

Aeronautics and Astronautics) meetings during the last three years
6-12

. This volume of research 

cotributions is too large to replicate herein. Instead, the procedures will be briefly described and 

illustrative applications will be shown from the AIAA papers. We first present the MFD 

equations.  

The Equations of Magneto-Fluid Dynamics 

1) The Navier-Stokes equations 
U F G H

S
t x y z

   
   

   
, with  , , , ,

T
U u v w e    , 

     density  , velocities ,u v  and w , total energy per unit volume e . 

2) Maxwell‟s equations - The Ampere-Maxwell equation 
1

e e

E B
J

t  

  
  

  
 

                                                 Faraday‟s equation             
B

E
t


 


 

                                                 with constraints           
1 c

e

E 


   and 0B  , 

      electric field E , magnetic field B , current density J , inductive capacity e ,  

      magnetic   permeability 7

2
4 10

( )
e

kg m

coulomb
   

   and charge density c . 

3) Generalized Ohm‟s law    ( )eJ E u B   , with electrical conductivity e . 

4) MFD assumption: charge neutral plasma, 0c  . 

 

The source term S  in the Navier-Stokes equations consists of the Lorentz force, fL J B  , 

acting on the momentum of the flow and Joule heating, caused by the flow of electric current 

through the fluid, plus the magnetic force work term acting on the energy of the flow.  

10,( ) , ( ) , ( ) , ( )

T

x y zS J B J B J B J J J B u

e


 
        
  

 

The Magnetic Reynolds number is defined by 0 0m e eR u l   , where 0u  and 0l  are reference flow 

speed. Most MFD simulations use the “Low Magnetic Reynolds” number approximation, which 

assumes that the electromagnetic field within the fluid changes insignificantly from that imposed 

externally. The approach taken here is allow the fields to change via induction as prescribed by 

the full set of Maxwell‟s equations. It will be shown that small changes to the electromagnetic 

field can produce significant changes to the flow. The set of Maxwell‟s equations above are the 

“usual” set found in the literature. This set consists of six field equations, plus the constraint that 

the magnetic field remain divergence free, 0B  . The “scalar and vector potential” form of 

Maxwell‟s equations, consisting of just four field equations, and automatically satisfying the 

divergence free constraint, is given below. 
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 The Scalar and Vector Potential Form of Maxwell’s Equations 

The excellent AIAA paper by Giordano
13

 describes the governing equations of fluid dynamics 

within electromagnetic fields. His paper presents and derives the scalar and vector potential form 

of Maxwell‟s equations, summarized below following his description. Because the divergence of 

a curl is zero, it is desirable to represent B  as the curl of a vector A , thus automatically 

satisfying the constraint 0B  . Substituting B A  into Faraday‟s equation yields  

A
E

t


 


      or      0

A
E

t

 
   

 
 

The term within the parenthesis is “curl free”, which implies that a potential   exists such that  

A
E

t



  


. Substituting this relation into Ampere‟s equation, 2 1
e

e

E
c B j

t 


  


, and 

using the identity, 2( )B A A A     ,  yields 

 2 2

( )
1

( )e

e

A

t c A A j
t






  

     


 

or  
2

2 2 2

2 2

1 1
e e

e e

A
c A c A j

t c t





   
            

 

The term in the “curly” bracket is related to the “Lorentz gauge” and is set to zero to remove the 

arbitrariness in the choice of the vector potential A . Thus 
2

1
0

e

A
c t


  


 and the time 

dependent equation for A  becomes 
2

2 2

2

1
e

e

A
c A j

t 


  


. From the constraint on the electric 

field, 
1 c

e

E 


  , and with the substitution 
A

E
t




  


from above, 2 1 c

e

A

t
 




  


,     

which via the “Lorentz gauge” becomes  
22

2 2

2

ce
e

e

c
c

t


 




  


. 

In summary, the scalar and vector potential form of Maxwell‟s equations are  

 
22

2 2

2
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e

e
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
 




  


        and        

2
2 2

2

1
e

e

A
c A j

t 


  


 

with the magnetic field B  and electric field E  determined from the solutions for scalar   and 

vector A  by 

B A            and            
A

E
t




  

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Note that only four elements need to be solved for in time, one scalar and the three components 

of A  and also the constraint 0B   is automatically satisfied. 

Solution Procedures for the Equations of Magneto-Fluid Dynamics 

Decomposing the Electromagnetic Fields into their Imposed and Induced Components 

It is advantageous to decompose the electromagnetic fields into their imposed and induced parts. 

First, the induced fields may be orders of magnitude smaller than the imposed fields and their 

magnitudes may therefore be compromised in numerical precision if they remain combined 

during numerical operations. Second, the implementation of initial and boundary conditions 

becomes simpler, because the imposed conditions are fixed by conditions external to, and 

therefore independent of, the calculated induced flow field. Therefore, we write for the magnetic, 

electric, scalar and electric potentials 

 

0tB B B      and    0tE E E   

0t        and    0tA A A   

 

where the subscript t  indicates the total field and the subscript 0 indicates the imposed field. The 

un-subscripted variables are the induced field components. Note that both forms, the usual and 

the scalar and vector potential forms, of Maxwell‟s equations are linear. Therefore, the imposed 

fields, 0B , 0E , 0  and 0A , and the induced fields, B , E ,   and A , each independently satisfy 

Maxwell‟s equations. 

 

Boundary Conditions for the Electromagnetic Fields  

Usually, textbooks give electromagnetic boundary conditions on what variables or derivatives 

are continuous across boundaries, so as relate these fields inside the flow field to those outside. 

However, it is desired here to calculate the electromagnetic fields only within the flow field. We 

therefore need the values of the electromagnetic field variables or their derivatives, the so called 

Dirichlet and Neumann type boundary conditions, instead of their continuity properties across 

boundaries. Otherwise, both the region within the flow field and outside would need to be 

calculated. To avoid this complication, we assume that there is sufficient information concerning 

the imposed fields along all boundaries of the flow field to set the needed boundary conditions. 

The following assumption is made along solid wall boundaries for the applications to follow. 

 

Assumption: We assume that the boundaries at solid walls are “perfectly conducting”. This 

implies that gradients in the electric field components parallel to the walls vanish. Otherwise, 

infinite currents would arise. We also assume that these components of the imposed electric field 

are constant in time and seek solutions converging to steady state in time.  

 

Numerical Method for the Navier-Stokes Equations 

The Navier-Stokes equations contain both the inviscid Euler and viscous terms. All terms and the 

boundary conditions are treated implicitly. The Euler terms use a modified Steger-Warming flux 

splitting procedure.  The approach used herein, believed originally suggested by C. Lombard
14 

in 

the 1980s, has the benefit of partitioning the conservative flux vectors themselves, which, for 

example, unlike the state vectors, are continuous across stationary discontinuities in the flow. But 
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more importantly, this approach can be used to partition general flux vectors that are not 

homogeneous of degree 1 with respect to the state vector U and does not need an approximate 

Riemann solution. For example, the flux at a surface between mesh points ,i j  and 1,i j  is 

given by 

 

1/ 2, , 1,
1/ 2, 1/ 2,

n n n n n

i j i j i j
i j i j

F F F   
 

 A A  

where 
1/ 2,

n

i j



A are matrices and ,

n

i jF  and 1,

n

i jF   are fluxes at and about the flux surface 1/ 2,i j . 

High order accurate approximations for the fluxes can be made by upwind extrapolation or 

interpolation of the flow variables to the flux surfaces. Second and third order accurate 

approximations are used herein along with a TVD (Total Variation Diminishing) procedure. 

 

 Numerical Method for the Maxwell Equations 

(1) The Usual Form of Maxwell‟s Equations - The initial attempt to solve the full set of 

Maxwell‟s equations, using a similar approach to that for the Navier-Stokes equations, 

showed too much numerical dissipation. The source of the dissipation was found and a 

novel scaling of the Maxwell flux vector was able to remove this difficulty. AIAA Paper 

2008-4010 describes the solution procedure for solving the usual form of Maxwell‟s 

equations. 

(2) The Scalar and Vector Potential Form of Maxwell‟s Equations  - Solution of this form of 

the equations was attempted because of the “four component” form of the unknowns and 

the automatic satisfying of the constraint that the magnetic field be divergence free. The 

four component form is fundamental to physical laws, i.e., Momentum and energy, where 

mass is a form of energy. Four component forms transform naturally in space-time, i.e., 

under Lorentz transformations.  This form showed no solution difficulties, however 

boundary conditions were more complicated This work is described in AIAA Paper 

2009-0455 

 

Numerical Method for the Equations of Equilibrium and Non-Equilibrium  

An air chemistry model containing nine species, plus two species for cesium and its ion, was 

considered. The cesium species were used to seed the flow within a scramjet engine to enhance 

ionization and hence the electrical conductivity of the gas. The species considered were 

2 2 2 2, , , , , , , , , ,N O NO N O e N O NO N O Cs and Cs                    
 

An 11 equation reaction model for the 11 air species, plus cesium and its ion, is shown below.  
 

2

2

2

2

(1) 2

2

(3)

(5)

N M N M

O M O M

NO M N O M

N O NO N

NO O N O

N O NO e

 





 


   

   

    

   

   

   

             

2

2

Cs e Cs e e

N e N e e

O e O e e

N N N e

O O O e

   
  

   
 

   
  

 
 

 


    

    

    

   

    
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A three temperature model for translational ,rotational and vibrational temperatures was used to 

determine the thermal non-equilibrium of the gas. This work is described in AIAA Paper 2010-

0225. 

 

Applications 

All results shown below were obtained with the numerical procedures discussed above. The 

procedures and the boundary conditions were fully implicit and run to high CFL numbers (10
5
) 

limited only by numerical precision considerations. Each problem was run to steady state in less 

than 256 time steps on a lap top computer.  

                                                                                               

 
Ram-C Flight Experiment                                       Figure 1  RAM-C flow field pressure contours       

During the 1960‟s a series of flight experiments
2
 were made at high altitudes during which 

electron number densities were measured using microwave reflectometers.  The vehicle was a 

sphere-cone body, with a 9
o
 cone half angle and a length of 1.295m. The simulated flow field 

about the body nose is shown in Figure 1 above, showing pressure contours for a free stream 

(shown in solid blue) of Mach 25.9 at an altitude of 71km.  
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    Figure 2 Temperature contours, RAM-C                 Figure 3 T along stagnation streamline  

 

The present case was chosen as a test case to check the results using non-equilibrium chemistry 

model 1 using 7 species,  2 2, , , , ,N O NO NO N O and e       . Cesium was included but played no 

part because the initial mass concentrations were set to zero. A single energy equation was 

solved for temperature. Temperature contours and the temperature along the stagnation 

streamline are shown in Figures 2 and 3. Species mass fractions, /s sc   , are shown in Figure 

4. Peak electron densities, within the shock layer around the body, are compared in Figure 5. The 

comparison between experiment, shown by the symbols, and computation is fairly good. This 

simulation was made twenty years earlier by Candler
15

 with excellent agreement. Electron 

contours are shown in Figure 6. Mass fractions contours for atomic nitrogen and oxygen are 

shown in Figs. 7 and 8. 

 

                     
Figure 4(a) Mass fractions along stagnation streamline,          (b) Mass fractions on log plot 
 

                     
Figure 5 Peak electron number density                         Figure 6 Electron mass fractions ec 710  
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Figure 7 Contours of N  mass fractions                      Figure 8 Contours of O  mass fractions 

 

 Results for the Ziemer Experiment                                          

                                                                                             Figure 9 Dipole magnetic field lines 

In 1959 R.W. Ziemer
2
 reported results from an experimental investigation in magneto-

aerodynamics. He placed a hemi-spherically nosed cylinder, of diameter 0.02m and made of 

Pyrex glass, within an electromagnetic shock tube. A blast wave moved at Mach 21.5 into 

stationary air, at temperature 273
o
 K and pressure 9.33N/m

2
, past the model, producing a 

hypervelocity flow of ionized air. The period of steady flow time was only about 10 to 20 

microseconds. He placed a coaxial pulsed magnetic copper coil within the nose of the body, 

which produced a dipole magnetic field of 4 Tesla at the stagnation point of the body. He 

observed that with the magnetic field turned on the shock wave standoff distance increased by a 

factor of 7.5 for a magnetic interaction parameter 2

0 0 /eQ B l u    =69. The free stream 

conditions for the present Ziemer flow simulation are given in the table below. Although an 

attempt was made to match the experimental conditions of Ziemer, no precise match for the 

magnetic interaction parameter Q could be made because of the large variation in electrical 

conductivity e behind the shock. There was no clear choice of which value to use. The imposed 

magnetic field at the stagnation point was either Bo=0 or 5 Tesla. The temperature behind the 

shock wave near the nose was about 20,000
o
K and pressures were as high as 9x10

4
 N/m

2
. At 

these conditions the flow was almost completely dissociated. The non-equilibrium chemistry 

model included both the seven and eleven species model for non-equilibrium air. A single 

temperature was used in the present simulation, again using Park‟s
4
 thermodynamic relations. An 
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isothermal wall boundary condition was assumed with the wall temperature at 273
o
K. However, 

a catalytic boundary condition
16

 for both species and internal energy was used at the wall. 

 

Free Stream Conditions 

velocity 6715 m/s 

pressure 5717 N/m
2 

temperature 6049 
o
K 

density 2.011x10
-3

kg/m
3
 

 

         
Figure 10  Pressure contours, Bo=0, 7 species air          Figure 11(a) Pressure contours, Bo=5, 7  

                                                                                                               species air 

 

 
Figure 11(b) Pressure contours, Bo=5, 11 species air 

 

Standoff Distance  

The pressure contours for the flow about the model are shown above in Figs.10, 11(a) and (b), 

with and without the dipole magnetic field and using the 7 and 11 species model for non-

f

u

l

l 
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equilibrium air. When the magnetic field was turned on, the standoff distance of the bow shock 

wave from the model nose increased from 0.0017m to 0.0058m, a factor 3.4 times further, for the 

7 species air model, and to 0.0231m for the 11 species model, a factor 7.7 times greater than that 

shown in Fig.10. The 11 species model of air included ionization of 2 2, ,N O N and O     as well as 

NO , which increased the number of free electrons and therefore the electrical conductivity of 

the gas and the electromagnetic field interaction with the flow. The 11 species air model is more 

realistic for simulating Zieman‟s experiment because the temperatures behind the bow shock 

wave reach temperatures as high as 20,000
o
 K. 

 

Imposed and Induced Magnetic Fields  

The imposed and induced x  components of the magnetic fields surrounding the sphere-cylinder 

body are shown below. It is observed that the induced field strengths are small compared to those 

imposed and therefore the Low Magnetic Reynolds number approximation would probably 

suffice. Also, it is interesting to note that in Figures 12 and 13(a) and (b) the induced field tends 

to reduce the total field strength.  

 

           

      Figure 12 Imposed 0
x

B  field                                Figure 13(a) Induced xB  field, 7 species air    

 

Figure 13(b) Induced xB  field, 11 species air    
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Mass Fractions and Temperature along Stagnation Streamline 

Mass fractions along the stagnation streamline are shown in Figure 14 below for the case with 

the magnetic field turned on for the seven species air model.  The plot at the left is linear and that 

on the right is a log plot. At the high free stream temperature diatomic oxygen is near completely 

dissociated.  

      

         Figure 14 Mass Fractions  /s   along stagnation stream line, left - linear and right - log plots  

 

The temperature along the stagnation streamline is shown below in Figure 15, again for the 7 

species model for air. 

 
 

                                    Figure 15 Temperature along stagnation streamline 
 

 

Computational Results for the Hartmann Problem                              

                                                                                                             Figure 16 Hartmann Flow 
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An appropriate first test case for the MFD equations is Hartmann Flow
1
. Hartmann flow consists 

of viscous flow between two infinite parallel plates within an imposed constant magnetic field, 

0
0yB  , normal to the plates and an imposed electric field, 

0
0zE  , normal to the flow and the 

imposed magnetic field. A stream wise pressure gradient, 
p

x




, is also imposed upon the flow. All 

other derivatives with respect to x , as well as all those for z , vanish. Analytic solutions exist for 

velocity u  and induced magnetic field component xB  as functions of y . The Hartmann number 

is defined by
0

0

e
H y hR B y




 , where 0  is the fluid viscosity and 

hy  is half the distance between 

the plates. The electrical load factor is defined by 0

00

z

y

E
L

u B
  . The mass flow rate 

02
h

h

y

h
y

u dy u y


  is held constant during the calculation, i.e. the average velocity across the 

channel is 0u . Initially the current has only a z component,  
0 0z e z yJ E uB  . The Lorentz 

force acting on the fluid, fL J B  , has x component  
0 0 0 0fx z y e y z yL J B B E uB     . 

Hence, the average force across the channel is 0

0

0
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0

0

1
z

fx e y

y

E
L u B

u B


 
   

 
 

. Thus, load factors 

greater than one will accelerate the flow and those less than one will decelerate the flow. This 

force, as well as the viscous friction forces, must be balanced by the pressure gradient, 

0

0

0

2

0

0 tanh( )

z H
e y

y H H

Ep R
u B

x u B R R


 
   

   

, where the Hartmann number dependence is caused by 

viscous forces.  

 

Computed results for the full set of MFD equations are compared with the analytical solution in 

Figure 17. The initial flow was at Mach 0.1, at atmospheric pressure and 300
o
 K temperature. A 

perfect gas equation of state was assumed. The plates were isothermal, also at 300
o
 K, and the 

Hartmann number was 10. The electrical conductivity e  was determined from the Hartmann 

number relation given above. The distribution of xB  is anti-symmetric across the channel and the 

velocity u  is symmetric. The numerical solution of the usual form of Maxwell‟s equations, 

(filled circle symbols) and those of the potential form, (open square symbols) are both in 

excellent agreement with theory
1 

(line). The results shown locked in after 128 time steps, but the 

calculation was continued to 2048 time steps without further change.  
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Figure 17 Hartmann Flow Solutions Compared with Theory, symbols-numerical, curve-theory  

 

Computational Results for an MFD Accelerator                  

                                                                                 Figure 18 Sketch of MFD channel accelerator  

Park, Bogdanoff and Mehta
4
 presented a 1-D analysis of the performance of

 
a scramjet 

propulsion system incorporating the MFD (magneto-fluid dynamics) energy bypass concept
3
.  

The system contained sections for an MFD generator, combustor and an MFD accelerator. The 

Park, Bogdanoff and Mehta accelerator section was a square converging duct, 2.846m long, of 

height/width 0.933m at the entrance and 0.730m at the exit, which is sketched in Figure 18. It is 

located just down stream of the combustor section. The imposed magnetic field across the 

channel was 0
y

B  11.28T and the transverse voltage gradient varied from 0
z

E  -30,990 V/m at 

the entrance to -31,470 V/m at the exit. At the entrance the pressure was 1.251x10
6
 N/m

2
, 

temperature 3583
o
 K, and the Mach number equaled 1.15. The electrical conductivity used by 

Park, Bogdanoff and Mehta was 35.87 /e mho m  . The interaction parameter 
2

0 0 /eQ B l u   =20 and the magnetic Reynolds number mR =0.17, defined by 0 0m e eR u l   , 

where 0u  and 0l  are reference flow speed and accelerator channel length, and  e  is the 

magnetic permeability.  

 

In the present study, the flow is treated as two dimensional and e  is calculated. Laplace‟s 

equation for the imposed electro-magnetic fields within the channel was solved to keep 

0 0B  . The non-equilibrium chemistry model contained 9 species,  

2 2, , , , , ,N O NO NO N O Cs Cs and e         , including cesium and its ion with initial mass fractions 

of  4x10
-4 

and 0 , respectively. Maxwell‟s equations were solved
3
 in their vector potential form. 

The electrical conductivity depended upon the degree of ionization present and was calculated 
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via Park‟s transport model
17

. The rate constants for cesium came from Park
18

 citing the 

experimental data of Chen, C.J., Wu, J.M., Wu, F.T., and Shaw, D.T
19

. 

 

The components of the induced and imposed magnetic and electric fields, some showing field 

lines, are shown in Figures 19 to 24. The induced fields are very small compared with the 

imposed fields, particularly the electric field. A supersonic flow in a converging channel should 

slow down, but the results shown in Figures 25 show considerable acceleration of the flow, 

caused by the interaction of the electromagnetic fields with the ionized flow. These results are 

similar to those obtained for flows simulated with equilibrium gas chemistry
15

. The maximum 

temperature within the flow was about 4,400
o
 K and the flow reached chemical equilibrium.  The 

solution converged in about 200 time steps. 
 

    

     Figure 19 Imposed 0
x

B field                                Figure 20 Imposed 0
y

B field 

  

    Figure 21 Induced xB field                                    Figure 22 Induced yB field 

 

     Figure 23 Imposed 0
z

E field                                Figure 24 Induced zE field  

 
Figure 25 Velocity vectors and u  velocity contours 
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Thrust, Velocity and the Unstart Problem   

Figure 26 shows accelerator section thrust and maximum velocity along the channel.  

 

 

2

( )

2

( )

S exit

S entrance

u p ds
Thrust

u p ds













    and     

max ,

0

1
max { ( , , )}y zu u x y z

u
  

The velocity increases by a factor of more than two, in agreement with the load factor setting, 

and the thrust by more than 50%. However, a shock wave is seen moving back up the channel, 

located at about x = -0.5 in the figure, which will cause the engine to unstart. The design Mach 

number at the entrance of 1.15 cut it too close and a larger Mach number is needed as a safety 

factor to prevent an engine unstart. The accelerator section of the channel is 2.846m long, 

starting at x=0. Note the peak in velocity at the end of the section, where the imposed magnetic 

field decreases, as shown in Figure 20. Apparently, there is also a defect in velocity at the start of 

the accelerator section, where the imposed magnetic field increases, which causes the flow to be 

subsonic, starting a shock wave to form, which moves forward as observed in the figure above. 

This phenomenon was also observed in equilibrium flow simulations
9
. The explanation for this 

follows. 

 

 
Figure 26 Accelerator Section Thrust and Velocity 

The Lorentz force acting on the fluid is given by  LF J B  , where ( )eJ E u B   . If 0E   

the Lorentz force always acts to decelerate the flow. The imposed electric field is chosen to 

oppose this deceleration and, if sufficiently large, accelerate the flow. Examination of Figures 18 

and 21 shows that as the flow approaches the accelerator exit at x=2.846m the imposed magnetic 

field decreases and the electric field remains constant, thus favoring acceleration. After passing 

through the exit, the electric field suddenly vanishes, thus favoring deceleration and explaining 

the velocity peak at the accelerator exit. On the other hand, as the flow approaches the 

accelerator entrance at x=0, the imposed magnetic field increases and the electric field is zero, 

thus favoring deceleration. After passing through the accelerator entrance, the electric field 

suddenly increases, thus causing acceleration of the flow. 

Conclusion 

The goal of the present research is to develop the numerical procedures for solving the equation 

of magneto-fluid dynamics. This work is important to the Air Force to determine the potential 

benefits of the interaction of electromagnetic fields produced on board an aerodynamic vehicle 
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with the high speed flow about the vehicle or through its engines. The primary application of this 

research is to simulate flows necessary to design hypersonic vehicles. The equations governing 

ionized hypersonic flow include the Navier-Stokes equations, Maxwell‟s equations and the 

equations of chemical and thermal non-equilibrium. The present paper summarizes the past three 

year effort for solving these equations. The details of this research are contained in seven papers 

presented during this time at meetings of the AIAA 

 

The procedures were applied to the RAM-C flow test problem, the Ziemer experiment, the 

Hartmann flow problem and to the flow within an MFD channel accelerator containing strong 

imposed electric and magnetic fields. The RAM-C flow case demonstrated the accuracy of the 

non-equilibrium flow solver. The Ziemer flow simulation agrees with the experimental finding 

that the standoff distance of the bow shock wave can increase several fold because of the 

interaction of a magnetic field with the ionized flow. The Hartmann flow problem verified the 

accuracy of the procedure used to solve Maxwell‟s equations. 

.  

The MFD channel accelerator cases demonstrated  

1) the capability of the non-equilibrium flow procedure to include cesium as a seeding 

material to increase the ionization of the air gas mixture and therefore the interaction of the 

flow with the imposed electromagnetic field, and 

2) the need for a high enough supersonic Mach number at the entrance of the accelerator to 

prevent an engine unstart. 
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